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Abstract: This research tests the moral hazard hypothesis in the insurance market for 
natural hazards. This states that insurance coverage does not reflect the distribution of 
natural hazards due to households tending to under-insure as the liability of risk is likely 
to be borne by others. We use insurance portfolio data (n=~12,000) from a large private 
insurance company linked to asset (dwelling unit) data from Tax Authority records for 
the Haifa. We control for housing attributes including price, size, year built, distance to 
hazards (natural and anthropogenic) and local socio-econ attributes include income and 
crime. We use spatial econometrics estimating a SAR (spatial autoregression) model to 
understand the effect of exposure to hazards on maximum insurance coverage (structure 
and content). Our estimation strategy accounts for selection bias in data (using 
Heckman procedure), spurious spatial relationships (residuals testing) and issues of 
identification (using SUR- seemingly unrelated regression). The findings differentiate 
between structure and content insurance. The former is directly related to dwelling unit 
attributes such as size, price, number of floors and other house prices in the vicinity.  In 
terms of hazards we find a positive relationship to local crime rates and distance to 
industry and an inverse relationship to distance to forests. No relationship is established 
with distance to the centers of simulated earthquakes of different magnitudes. These 
findings support the hypothesis with respect to the existence to a moral hazard in 
relation to earthquakes. Policy implications are suggested.  

 
  

של סיכונים את  השערת  קיומו של  סיכון מוסרי בשוק הביטוח  ןבוחמחקר זה  תקציר
אינו משקף את ההתפלגות המרחבית של  י.  במידה והכיסוי הביטוחואנתרופוגניים טבעיים

מפרשים תוצאה זו כמשקפת סיכון מוסרי שבו משקי בית נוטים  לא לבטח  ואנ  םסיכוניה
את נכסיהם. אנו משתמשים בקובץ ייחודי של פוליסות ביטוח של אחד החברות המרכזיות 

תיקים) ומחברים מידע זה עם מידע של נכסים מתוך מאגר כרמ"ן  12000בשוק  באזור חיפה (
וי סקונומטרית  כדי להבין את הקשר בין  כישל רשות המיסים. אנו משתמשים באמידה א

. אסטרטגיית האמידה מתחשבת אנתרופונגניים) ביטוחי לבין החשיפה לסיכונים (טבעיים
בהטעיית סלקציה במידע, קשרים מרחביים מטעים ושאלות של זיהוי (סיבתיות). 

קשר  הממצאים מבחינים בין כיסוי מבנה לבין כיסוי תכולה.  ביחס לכיסוי מבנה נמצא
חיובי בין גובה הכיסוי לבין תכונות הנכס (כגון מחיר, שטח, מספר קומות, מחירים בסביבה 
וגם קשר שירי עם קרבה לתעשיה ולפשיעה מקומית. נמצא קשר הפוך עם קרבה ליערות ולא 
נמצא קשר מובהק למוקד רעידות אדמה מסומלצים בכל המגניטודות. ממצא זה מתפרש 

 . מספר צעדי מדיניות אופרטיביים מוצעים.כתומך בהשערה המרכזית
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1 .Introduction  

Moral hazard is an endemic feature of insurance markets. In a competitive 

market, insuring against risk involves lump-sum transfers when an observable risk 

materializes. A moral hazard occurs when a change in the risk or the actions of an 

insured party takes effect and this change is unobservable to the insuring party. For 

example, faced with a natural (observable) hazard, households may take fewer 

measures to limit their own exposure. This is an action unobservable to the insurer.  

Households may reduce their own mitigation efforts because they expect insurers to 

compensate their damage irrespective of their self-protection measures.  Individuals 

and households will thus tend to take larger than normal risks when insuring their own 

houses (structure and contents) as the liability from that risk is likely to be borne by 

others. As Arnott and Stiglitz (1988) note, "as more insurance is provided, the marginal 

private benefit to the individual of expending a given level of effort on accident 

prevention falls; as a result, he will tend to expend less effort which will increase the 

probability of his having an accident "(p385) . This increases household exposure to 

risk and results in an inverse relationship between risk-reduction measures and 

insurance. The outcome is that the more coverage the household purchases, the less 

likely it is to engage in risk-reducing activities (Ehrlich and Becker 1972).  

Along with the tendency to underestimate probabilities of risk and to discount 

them highly, moral hazard incentivizes the tendency to under-insure (Kunreuther and 

Pauly 2004). The result is that insured households bear greater losses in the event of a 

natural disaster. Under such conditions, the insurance coverage limit represents the 

upper bound of the moral hazard. Understanding the insurance coverage limit is thus a 

key component in understanding behavior of households in the insurance market. This 

market is different to other markets that provide services as it involves an element of 

redistribution. The moral hazard serves to underscore this: there is little incentive to 

limit risk or take precautions as insurance providers are expected to pay on the basis of 

premia collected from unaffected parties. Because of asymmetric information, moral 

hazards are not always observable by insurance providers and therefore risk-taking 

behavior is not necessarily captured by higher insurance premia.  On the other hand, 

moral hazards will impact on policy holders spatial behavior. As the latter are less likely 
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to engage in risk mitigation, their location choices will not necessarily reflect a distance 

preference from low probability/high impact hazards. 

This paper investigates the existence of a moral hazard (MH) with respect to 

insurance coverage for two natural hazards, forest fires and earthquakes. While the 

existence of a moral hazard has been addressed in the context of various insurance 

markets such as health, long-term care and car insurance (Sloan and Norton 1997, 

Finkelstein, McGarry, and  Sufi 2005, Cohen and  Siegelman 2010) it has only rarely 

been tested in relation to natural hazards (Carson et al 2013, Hudson et al 2017). The 

market for natural hazard insurance also differs to other insurance markets as its 

operation is invariably distorted by the existence of adverse selection (AS). This arises 

when only those faced by the hazard purchase insurance coverage. For example in terms 

of natural hazards, this would mean that only households residing close to potential 

hazard locations would buy insurance (akin to only sick people purchasing health 

insurance).   Many studies exist with the aim of trying to predict which of these two 

distorters (MH or AS) are prevalent in insurance markets (Cohen and Siegelman 2010, 

Kreibich et al 2011). When MH is not observed, for example when households with 

natural hazard coverage take greater self-protection measures than uninsured 

households, this is commonly ascribed to behavioral attributes such as risk aversion 

(RA) (Dionne and Eeckhoudt 1985). These unobservables have a large effect on 

determining the insurance coverage limit.  

In this study we test for the existence of a moral hazard in the market for natural 

hazard insurance with respect to earthquakes and forest fires. In both cases we 

hypothesize an expected inverse relationship between insurance coverage limit and the 

risk involved. We estimate the effect of probable earthquake damage (of differing 

intensities) at the building level on insurance coverage and the effect of proximity to 

forests (fire risk) on the insurance coverage limit. For both hazards, we investigate 

whether natural disaster coverage limits are consistent with the implications arising 

from the existence of a moral hazard. Using unique household insurance portfolio data 

provided by a commercial insurer for the Haifa metropolitan area,  we estimate a model 

of insurance coverage limits. We are cognizant of the selection bias effect in such an 

exercise as we only observe households and housing units that purchase insurance. 

Consequently, we use the Heckman two-step estimation procedure to address this issue. 

Additionally we are aware of a potential identification threat in our empirical strategy 
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given that structure insurance (the variable of interest here) is jointly dependent on 

content insurance. We use seemingly unrelated regression (SUR) estimation and test 

the hypotheses of zero covariance between structure and content, to diffuse this threat.  

The paper proceeds as follows. Section 2  outlines the utilities to be gained from 

natural hazard insurance and the conditions under which different levels of coverage 

arise. This is followed by a description in Section 3 of the data generation, processing 

and study area that underpin the empirical analysis of the paper. The empirical strategy 

adopted is presented in Section 4 emphasizing the use of suitable estimation procedures. 

The empirical results are discussed in Section 5 and their implications highlighted in 

the conclusions. 

 

2. Defining the Insurance Coverage Limit for Natural Hazards 

Our approach builds on the foundations articulated in by Ehrlich and Becker 

(1972) who claim that comprehensive insurance decision making involves  three inter-

related activities.  The first involves acquiring market insurance. The second relates to 

self-insurance through the adoption of mitigating measures that reduce the probability 

of an event. For example, building protective defenses against flooding in order to 

mitigate damage. The third is self-protection which leads to reducing the impact of an 

event. At the extreme, this involves relocating out of a hazardous area. Ehrlich and 

Becker (1972) show that in the absence of a clear linkage between the level of insurance 

premia and risk reducing measures, market insurance and self-insurance are substitutes. 

This assumes, along with models predicting MH, that insurance purchasers make 

rational decisions when faced with natural hazards. However if insurance purchasers 

are driven by RA, substitution may not occur as latent risk convictions become divorced 

from insurance purchasing. Furthermore, a whole string of behavioral factors can lead 

to divergence from assumed rationality.  Insurers may tend to under-estimate risk 

probabilities (Pahl et al. 2005), over-prioritize perceived risk (Kunreuther and Pauly 

2004) and the likelihood of positive outcomes (Kunreuther et al 2013) and resist 

processing new information (Botzen and van den Bergh 2012).    

  While market insurance and self insurance are substitutes, market insurance 

and self-protection are complements (Ehrlich and Becker 1972). One strategy in self-

protection is locational choice. As noted above, the choice to remain proximate to a 

natural hazard may reflect the existence of a moral hazard in the insurance market. 

Households take larger than normal risks expecting insurers to compensate their 



6 
 

damage irrespective of their risk reduction efforts. While some claim that relocation as 

a mitigation is 'not a viable option' (Carson et al 2017, p309), we  consider this behavior 

(or its absence)  as a key variable in understanding the insurance coverage limit for 

natural hazards.     

We argue that in the case of natural hazards, the MH problem  associated with 

household insurance is likely to be mitigated. Natural hazard insurance is a useful 

mechanism in disaster risk management as it limits the costs of natural disasters 

spreading risk over space and time and over a diverse group of policy holders. It also 

facilitates recovery by providing financial compensation after a disaster attempting to 

restore pre-disaster levels of wealth.  The insurance market for natural hazards differs 

from other markets (such as health or accidents) as natural hazards are place or point 

oriented with known probabilities and return times. Therefore they are less random in 

both time and space than other insurable hazards such as car accidents or ill-health. 

Their coverage limit is thus expected to be bounded both in terms of both time and 

space.     

We define this coverage limit with respect to the loss and the premium 

associated with the natural hazard. Denoting α as coverage, π as premium, H as value 

of the property, W as value of the policy-holders wealth, L as loss, p as the probability 

of loss (1-p = no-loss probability), θ as the rate of loss, X as the magnitude of the event, 

δ as the probability of having coverage and r as the interest rate, we can define the 

following terms: 

Loss (L):  = X θ W0 (initial wealth prior to the hazard)  

Premium (π): this is related to W0, such that π = π' W0, where π' W0>0 

Coverage (α): coverage limit (α*) is  α*= απ 

 

In the event of a disaster, if the insurance pays  the limit α*, then the actual loss 

covered  by insurance is equal to either coverage (α) or the value of the loss itself  (L), 

whichever is smaller, 

Following Ehrlich and Becker (1972) and Kelly and Kleffner (2003) the 

individual will choose the insurance coverage limit that maximizes expected utility 

(EU): 
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𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑈𝑈𝛼𝛼 =  𝑝𝑝𝑝𝑝[𝑊𝑊0 α𝜋𝜋𝜋𝜋 − (1 − 𝑝𝑝)] + (1 − 𝑝𝑝)𝑈𝑈[𝑊𝑊0 −  α𝜋𝜋𝜋𝜋]

+ �
1

1 + 𝑟𝑟𝑡𝑡−1

𝑛𝑛

𝑡𝑡=1

         (1) 

This simple utility is comprised of two components: a cost function expressed 

as 𝑝𝑝𝑝𝑝[𝑊𝑊0 α𝜋𝜋𝜋𝜋 − (1 − 𝑝𝑝)] and a loss function denoted by (1 − 𝑝𝑝)𝑈𝑈[𝑊𝑊0 −  α𝜋𝜋𝜋𝜋]. 

The pre-hazard situation of the household (W0), which determines the premium and 

coverage, serves as the base for future time periods. If the probability of having 

coverage is δ, then the actual recovery (R) associated  with  insurance coverage is:  

𝑅𝑅 = 𝛿𝛿𝛿𝛿0 min{𝜋𝜋,𝛼𝛼}  where π' W0>0 

Substituting for L and R, the post-disaster wealth (W1) of the individual or 

household with coverage (α) will be: 

𝑊𝑊1(𝑋𝑋,𝑊𝑊0)𝛼𝛼 = 𝑊𝑊0 − 𝜃𝜃(𝑋𝑋)𝑊𝑊0 + 𝑝𝑝(𝑊𝑊0)𝑚𝑚𝑚𝑚𝑚𝑚�𝛼𝛼(𝑝𝑝(𝑊𝑊0),𝜃𝜃(𝑋𝑋)𝑊𝑊0�  

Equation (1) can be interpreted as the coverage limit for self-insurance (Briys 

and Schlesinger 1990). This includes all forms of self-mitigation against natural hazards 

such costs of defenses and protection measures. As noted earlier, an alternative strategy 

of self-protection that lowers the probability of a loss includes locational choice, ie 

maximizing utility from insurance coverage given a particular location (which at the 

extreme, would include relocating). This is expressed as:  
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑈𝑈𝛼𝛼 =  𝑝𝑝(𝑥𝑥)𝑈𝑈[𝑊𝑊0 − 𝐿𝐿 − 𝑐𝑐(𝑥𝑥) + [1 − 𝑝𝑝(𝑥𝑥)]𝑈𝑈[ 𝑊𝑊0 − 𝑐𝑐(𝑥𝑥)]     (2) 

where x denotes the level of self-protection and c is the cost associated with 

self-protection. 

The theoretical implication arising from equations (1) and (2) is that measures 

taken to enhance self-insurance tend to reduce risk whereas measures for self-protection 

do not (Briys and Schlesinger 1990). Therefore, risk-reducing behavior will result in 

increasing self- insurance but not necessarily in increasing self-protection. In fact, risk-

averse behavior does not contradict reduced levels of self-protection. This may provide 

an explanation for both the behavioral immobility of households in the face of natural 

hazards (why do people continue to live in low probability but high risk areas?) and the 

perceived suboptimal insurance coverage of households in natural hazard zones (why 

are households in high risk areas under-insured?). 
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3. Data  

We use a unique data set relating to the level of insurance coverage for assets 

(structure and content) provided by a commercial insurance company with a share of 

roughly 9% of the Israeli national market for house insurance.  The data contain 

insurance portfolios for close to 100,000 housing units for a geographic area that 

comprises the continuous built up area of the city of Haifa and a cluster of  small towns 

and suburbs to its north and east. While the study area overlaps much of the Haifa 

metropolitan area the two areas do not correspond totally (Fig 1). The area chosen 

includes two primary natural hazards. The first is the seismic hazard zone defined by 

the Yagur fault. This 20km transform comprises a system of faults that was last active 

in August 1984 when seismic shock of magnitude ~M5.3 was recorded at a depth of 

15-20 km (Salamon et al 2013, Levi et al 2018). As this fault runs through major 

population centers in the north of Israel, it thus considered potentially active and one of 

the likely sources of seismic damage in the country.   

The second natural hazard relates to the threat of forest fires. The study area is 

bounded by the Carmel forest to its south. Over a 5-day period in November 2010 this 

was the location of the largest forest fire in Israeli history. This event resulted in 44 

fatalities,   the evacuation of 17,000 residents  and the destruction of 25 sq km of forest 

and vegetation.  More recently (Nov 2016) the city of Haifa suffered  extensive fire 

damage that penetrated the urban area via the vegetated valleys and pine forest corridors 

that characterize city topography. These fires resulted in direct damage estimated as 

$180m, the  evacuation of nearly 70,000  city residents  and  the destruction of nearly 

600 homes  (mainly apartments) in 77 buildings leaving 1,600 people homeless (State 

Comptroller 2018).  
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Fig 1: The Study Area 

 

3.1 The Allocation Process 

The core data comprise insurance portfolios by housing unit. These contain 

details on maximal insurance coverage for structure and/or content  as well as attributes 

of the dwelling unit (floor number, type),  the building in which it is located (year built, 

number of floors in building, type ie single family home, apartment block etc)  and 

information on the policy owner (age, gender, marital status). The data are not fully 

geo-coded but provide city and street names. Instead of randomly assigning each asset 

(housing unit) to an address on its relevant street, we create an allocation algorithm that 

considers the building attributes and allocates the portfolios to a national GIS buildings 

(assets) data layer received from the Survey of Israel. The script randomly allocates 

each portfolio to matching assets based on city name, street name, floor number and 

building type (private, duplex or multi-unit). Additionally, this allocation process 

serves as a weight matrix for assigned streets, representing the density of the associated 
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potential assets.  Allocation variables are described in Figure 2 and the data flow in 

Figure 3. Ultimately, 11,926 portfolios in the study area are matched this way to an 

asset and receive x,y co-ordinates. 

 

Fields  used for the allocation: 
Portfolio data: GIS Assets layer: 

City Full address 

Street Number of floors in the building 

Asset’s floor Floor (string field) 

Building type (private, duplex or 
multi-unit) 

 

 

Table 1: Variables used in the data allocation process  

 

 

 
 

Fig 2: Data Allocation Flow Chart 
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3.2 Creating Synthetic Data: 

Our data on portfolios only includes households purchasing insurance coverage. To 

adjust for systematic differences that may exist between households that purchase 

insurance coverage and those that do not, we employ the Heckman two-step selection 

model to deal with the unobserved households. This adjustment is described below.  

In order to create a credible first stage selection in the Heckman adjustment process, 

we create 'semi-synthetic' observations for all other households in the study area who 

do not have insurance coverage. To achieve this, we use information on the share of 

households with insurance coverage in every statistical area (SA)1 in order to assign an 

insurance status to the remaining households (assets) in the GIS layer. This status 

indicates whether they purchased content/structure coverage or not, as well as the age 

of the head of the household (portfolio owner). The insurance status allocation 

(purchaser vs non-purchaser) and the age allocation are both random, independent of 

each other and do not consider any other properties of the asset. 

The synthetic data is thus created by random assignment  of SA-level data to assets 

based on the GIS data layer of all residential buildings in the study area described above.  

The SA-level data on insurance expenditure  comes from pooled survey data from the 

CBS Household Expenditure Survey (2009-2015) where respondents indicate if they 

have household insurance and the monetary value of their coverage. This survey also 

includes average socio-demographics for each SA. 

 

  

                                                           
1 An SA is a roughly homogenous administrative division defined by the Israel Central  Bureau 

of Statistics (CBS) akin to a census tract. Most SA's are uniform in population size with an average of 
3000 people. Large cities can have hundreds of  SA's  and the study area comprises around 120. 
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3.3 Description of Data 

Table 2 presents the data used in this study. The insurance portfolio data and 

the GIS building layer are the primary sources for asset-level information. Variables 

relating to income, crime rates, house prices and educational level are all aggregate 

level (SA) controls. Distance to hazardous industry serves the same purpose and is 

derived from GIS measurement.  

The key variables of interest relate to the risk associated with natural hazards. 

Distance to fire hazards is a building-level variable measured using GIS land use data. 

Seismic risk is derived from HAZUS damage estimates generated in conjunction with 

the Israel Geological Survey (IGS). The IGS uses a HAZUS MH 2.1 model to estimate 

damage scenarios for seven active seismic faults in Israel (Levi 2015). IGS earthquake 

scenarios calculate ground motion resulting from a specific earthquake and in HAZUS, 

damage assessment relate to SA centroids. Thus for a given SA  a single set of ground 

motion parameters is applied to all buildings irrespective of within tract variation in  

ground motion and soil conditions. HAZUS outputs compute site-specific loss 

estimations, based on ground acceleration and inventories of SA's, buildings and 

infrastructure.  

Based on these outputs, we allocate damage probabilities (DPs) to each building 

within each SA. In this way, DP's are considered properties of individual buildings. As 

HAZUS damage calculations differ across scenarios, we consider three plausible  

options, all of them located along the potentially-active Yagur fault. The parameters of 

each scenario are given in Table 3. Scenarios A and B are calibrated according to the 

Geophysical Institute of Israel's (GII) standard peak ground acceleration (PGA) maps 

and their recurrence interval is known. The recurrence interval of scenario C is not 

calibrated by a standard map, but is estimated to be less than 475 years (probability of 

reoccurrence over 50years >0.10). Based on the DP's, each building in a SA is assigned 

a probability of 1. no damage, 2. slight damage, 3.moderate damage, 4. extreme damage 

and 5. complete damage  for each of the three scenarios. This results in 15 different 

HAZUS-related values for each observation. To generate a unified variable 

representing building vulnerability (I) we create the following index: 

  

𝑖𝑖𝑋𝑋 = 0 ∗ 𝐷𝐷𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑥𝑥) + 2 ∗ 𝐷𝐷𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑡𝑡(𝑥𝑥) + 3 ∗ 𝐷𝐷𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) + 8 ∗ 𝐷𝐷𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥)
+ 10 ∗ 𝐷𝐷𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) 
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and   𝐼𝐼 = ∑𝑝𝑝𝑥𝑥 ∗ 𝑖𝑖𝑋𝑋 = ∑ 𝑖𝑖𝑋𝑋
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑𝑥𝑥

  

therefore:  𝐼𝐼 = 𝑖𝑖5.5
200

+ 𝑖𝑖6
475

+ 𝑖𝑖6.7
975

 

 

As a given building is expected to reflect different levels of resilience under changing 

magnitudes of hazards, the index is designed to reflect the changing probabilities of 

damage at higher levels of exposure. Index weights are  meant to capture the marginal 

cost of damage for each level of  damage exposure.  
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Table 2: Data Description  and Sources 

 

Variable Measurement 
unit 

 Source 

Structure coverage ILS Maximal coverage limit for structure Portfolio data 
Content coverage ILS Maximal coverage limit for content Portfolio data 
Communal (dummy)  A dummy for a communal building Portfolio data 
distance to industry Meters Aerial distance between assigned 

location and nearest petrochemical 
industrial zone 

GIS layer - 
Survey of Israel 

floor number  Floor number of asset Portfolio data 
crime_per1k in SA  Number of break-ins per 1000 residents, 

by SA 
Israel Police, 

Sqm sqm Area of the apartment Portfolio data 
bld_age years The age of the building Portfolio data 
𝐷𝐷𝑃𝑃𝑖𝑖(𝑥𝑥) Probability 

[0,1] 
The probability for damage scenario 𝑖𝑖 
given an earthquake of X Moment 
magnitude. 

𝑖𝑖

⎩
⎪
⎨

⎪
⎧

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 

HAZUS, Israel 
Geological 
Survey (IGS) 

𝐼𝐼  Combined vulnerability index 
𝐼𝐼 = �𝑝𝑝𝑥𝑥 ∗ 𝑖𝑖𝑋𝑋 

HAZUS,  IGS 

𝑖𝑖5.5  Vulnerability index for a 5.5 Moment 
magnitude earthquake 

HAZUS, IGS 

𝑖𝑖6  Vulnerability index for a 6 Moment 
magnitude earthquake 

𝑖𝑖6.7  Vulnerability index for a 6.7 Moment 
magnitude earthquake 

Age Years Age of the portfolio owner; imputed age 
for the rest 

Portfolio data, 
CBS 

n_floors in the building  Number of floors in the building Portfolio data 
Proximity to forest 
(dummy) 

 =1 if the asset is within 50 meters from a 
forest 

GIS layer-Survey 
of Israel 

income in SA ILS Median annual earned income 2015 CBS, 2015 
h_prices in SA ILS Average prices per sqm Carmen data base 

(Israel Tax 
Authority) 

pec_edu_13y in SA % Share of people with >13 years of 
education 

CBS, 2013 

pec_ownership in SA % Share of households owning the 
apartment in which they reside 

CBS Household 
Expenditure 
Survey (HES) 
2009-2015 

%insured HH in SA % Share of HH with insurance portfolio 
(structure or content) 
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Table 3: Three earthquake  scenarios associated with the Yagur Fault  

Scenario Magnitude  

(moment magnate scale) 
Recurrence Interval 

A 6.0 475yr (10% @50yr) 

B 6.7 975yr (5% @50yr) 

C 5.5 Less than 475yr 

 

 

4. Estimation Issues  

4.1 Selection Bias 

The observed data in this study suffer from selection bias in that they only relate to 

assets (housing units) for which insurance coverage is purchased. Not all households 

purchase insurance and there may be a latent selection variable z* that governs the 

insurance decision for a particular dwelling unit. Generally z* is not observable and its 

sign can only be inferred. If a household purchases insurance then z* is assumed to be 

positive and  z=1. The opposite holds if insurance is not purchased (z=0). This decision 

choice can be estimated using standard probit estimation. However, estimating the 

extent of insurance coverage (the nonlimit sample) using OLS will produce errors that 

are heteroscedastic by construction (Heckman 1979). 

The solution to this estimation issue is the  Heckman two-step selection procedure. This   

involves first estimating the decision (selection) equation and obtaining estimates of λi  

(ie the inverse Mills ratio) for each observation in the nonlimit sample. The second step 

calls for the OLS estimation of  y on x and  𝜆̂𝜆  for the nonlimit  (outcome) equation, 

where 𝜆̂𝜆 serves as a control for selection bias. If 𝜆̂𝜆 is statistically significant, its omission 

produces  selection bias. If  𝜆̂𝜆 is not significant  its omission does not lead to biased 

errors and OLS estimation of  the outcome model will generate consistent estimators. 

In our case, the selection (probability of having insurance coverage) equation is: 

 𝑧𝑧𝑖𝑖∗ = 𝛾𝛾′𝑤𝑤𝑖𝑖 + +𝑢𝑢𝑖𝑖        where  𝑢𝑢𝑖𝑖    𝑖𝑖𝑖𝑖 𝑁𝑁[0,1]                     (3) 

𝑧𝑧𝑖𝑖 = 1   𝑖𝑖𝑖𝑖  𝑧𝑧𝑖𝑖∗ > 0  and   𝑧𝑧𝑖𝑖 = 0   𝑖𝑖𝑖𝑖  𝑧𝑧𝑖𝑖∗ ≤ 0  

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑧𝑧𝑖𝑖 = 1)  = Φ(𝛾𝛾′𝑤𝑤𝑖𝑖) and  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑧𝑧𝑖𝑖 = 0)  = 1 −Φ(𝛾𝛾′𝑤𝑤𝑖𝑖) 

where Φ denotes the cumulative normal distribution. 
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The nonlimit (insurance coverage) equation in reduced form is: 

 𝑝𝑝𝑖𝑖 = 𝚩𝚩′𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖        where  𝜖𝜖𝑖𝑖    𝑖𝑖𝑖𝑖 𝑁𝑁[0,1]                              (4) 

where: pi is the insurance coverage limit,   𝚩𝚩′ is a vector of covariates including 

dummies and controls and (𝜖𝜖𝑖𝑖  ′ 𝑢𝑢𝑖𝑖 ) are N[0,1 , σ2 ρ] with ρ denoting the correlation 

between p and z. Equation (4)  is only observed if  zi=1. This implies that estimating 

the coefficient vector B  in (4)  without Heckman's correction  will result in omitted 

variable bias. Estimates of B will be inconsistent and oblivious to the fact that housing 

units that purchase insurance may differ systematically from those that do not. Equation 

(4) can be reformulated  to account for the fact that zi and wi are observed for a random 

sample of insurance purchasers but pi is observed only when zi=1, as follows: 

𝐸𝐸[𝑝𝑝𝑖𝑖|𝑧𝑧𝑖𝑖 = 1] = 𝚩𝚩′𝑥𝑥𝑖𝑖 + 𝜌𝜌𝜌𝜌, 𝜆𝜆(𝛾𝛾′𝑤𝑤𝑖𝑖 )                          (5) 

where λ(γ′wi ) is the inverse Mills ratio given by  ϕ(γ′wi )/[1 −Φ(γ′wi )].   The 

normal density  and distribution function are denoted by and ϕ  and Φ respectively. 

 

4.2  Spurious Relationships 

To diffuse claims that the spatial pattern of insurance coverage does not reflect natural 

hazards but some other confounding relationship, we test for the existence of a spatial 

association between insurance cover and income. We utilize aggregate data at the SA 

level for both insurance coverage and income variables. Fig 3  maps the residuals  of 

the relationship between these two variables. There is no visually apparent picture of 

spatial concentration nor is there any evidence of any local spatial association with 

small and insignificant Moran’s I values in both cases. 
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Fig 3: Testing for Spatial Association 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Identification Threats 

The identification threat to estimating structure coverage comes from the fact that some 

households are 'natural insurers' and therefore structure (S) and content (C) insurance 

are  jointly dependent. Our data covers household insurance policies in all forms of 

combination as follows:   

Structure X X  

Content X  X 

 

We assume the existence of latent variables C*i  and S*i:  

The utility from purchasing 𝐶𝐶𝑖𝑖:     𝐶𝐶𝑖𝑖∗ = 𝛼𝛼𝛼𝛼𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

If  𝐶𝐶𝑖𝑖∗ < 0   →   𝐶𝐶𝑖𝑖 = 0   (i.e. will not purchase) 

Utility from purchasing 𝑆𝑆𝑖𝑖:     𝑆𝑆𝑖𝑖∗ = 𝛽𝛽𝛽𝛽𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

If  𝑆𝑆𝑖𝑖∗ < 0   →   𝑆𝑆𝑖𝑖 = 0   

To identify 'natural insurers' ie those people who have both S and C coverage  we need 

to test for covariance , ie. 𝜌𝜌𝜀𝜀𝑐𝑐,𝜀𝜀𝑠𝑠 > 0 
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Our data includes only those for whom 𝐶𝐶𝑖𝑖∗ > 0    𝑜𝑜𝑜𝑜  𝑆𝑆𝑖𝑖∗ > 0      

As noted, theory posits various unobservables that will result in sub-optimal coverage, 

for example  risk aversion (RA), moral hazard (MH) and adverse selection (AS). These 

will affect the covariance between the errors of the factors influencing  both C and S, 

such that :  

     𝜀𝜀𝑆𝑆 = 𝜆𝜆𝑠𝑠𝑅𝑅𝑅𝑅 + 𝑀𝑀𝑀𝑀 

     + -        - 

𝜀𝜀𝑐𝑐 = 𝜆𝜆𝑐𝑐𝑅𝑅𝑅𝑅 + 𝑀𝑀𝑀𝑀 + 𝐴𝐴𝐴𝐴 

 

The covariance (hitherto ignored) between 𝜀𝜀𝑆𝑆, 𝜀𝜀𝑐𝑐 is expressed as  

𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀𝑆𝑆, 𝜀𝜀𝑐𝑐) = 𝜆𝜆𝑠𝑠 ∙ 𝜆𝜆𝑐𝑐 ∙ 𝑐𝑐𝑐𝑐𝑣𝑣2(𝑅𝑅𝑅𝑅) + 𝜆𝜆𝑠𝑠 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅𝑅𝑅,𝐴𝐴𝐴𝐴) − 𝜆𝜆𝑐𝑐 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑅𝑅𝑅𝑅,𝑀𝑀𝑀𝑀) 

If we assume  that 𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀𝑆𝑆, 𝜀𝜀𝑐𝑐) = 0 , we can focus on either S or C. However more 

probably 𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀𝑆𝑆, 𝜀𝜀𝑐𝑐)  is large and non-zero. The most efficient way of  dealing with  

this dependence is to estimate models for S and C  as a SUR (seemingly unrelated 

regression, Zellner 1962) and to obtain 𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀𝑆𝑆, 𝜀𝜀𝑐𝑐). SUR regression assumes that  cross 

section dependence in the residuals is seemingly unrelated, ie it has no spatial or  

common factor sources. Essentially its is an extension of linear regression and allows 

for estimating coefficients in a system of multiple equations with  parameter restrictions 

and correlated error terms. This yields estimates that are asymptotically more efficient 

than single equation models.   

Tables A1 and A2  present the SUR models and covariance results respectively. As 

anticipated, the models for S and C and very similar results and most significantly, 

𝐶𝐶𝐶𝐶𝐶𝐶(𝜀𝜀𝑆𝑆, 𝜀𝜀𝑐𝑐) is far from 0.   
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Table A1:  SUR regression results for Coverage Limits; Structure and Content 
Insurance  

             SUR model 
VARIABLES Structure Content 
   
Multi-unit (dummy) 426,454*** 259,877*** 
 (141,116) (77,917) 
Private (dummy)  -36,806 
  (105,517) 
crime_per1k in SA -7.339e+07* -4.468e+06 
 (3.826e+07) (1.833e+07) 
Distance: to industry 2.940 6.381 
 (21.43) (10.34) 
    -to forests (log) 22,418 -4,219 
 (48,293) (23,325) 
Floor # of the asset 105,178*** 15,009* 
 (16,398) (7,868) 
Sqm 72,592*** 20,636*** 
 (1,391) (864.6) 
i_ 4.493e+06 5.790e+06 
 (7.502e+06) (3.554e+06) 
Client’s age 30,748*** 20,349*** 
 (2,641) (1,270) 
# rooms  40,413* 
  (23,188) 
bld_age 10,211***  
 (1,908)  
Income in SA 140.4*** 102.2*** 
 (29.10) (14.06) 
Constant -4.439e+06*** -2.735e+06*** 
 (476,540) (235,744) 
   
Observations 6,793 6,793 
R-squared 0.361 0.222 

 
*** p<0.01, ** p<0.05, * p<0.1 
Note: Dependent variable  non-log format. Standard errors in parentheses. Households 
without structure/content policy are flagged as 0 
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Table A2: Covariance results  
 

Covariance: Us Uc 

Us – residuals from Structure reg.  1.0*1013  
Uc – residuals from Content reg. 3.0*1012 2.4*1012 

 
Correlation Us – residuals from Structure reg.  
Uc – residuals from Content reg. 0.6161, p< 0.0000 
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5. Empirical  Results 

 

Two-sample t test with equal variances  
 Mean 

St_Err t_value p_value 

N. Observations 

Structure coverage No Yes No Yes 
 Age - head of HH 54.58 51.893 .285 9.4 0 57176 3321 
 # floors in the bld 4.239 4.898 .055 -12.15 0 57176 3321 
 log deal 12.996 13.22 .012 -19.1 0 57176 3321 
 share education >13y 
in SA 

47.784 50.127 .255 -9.2 0 57176 3321 

 crime per 1k in SA .002 .002 0 4.65 0 57176 3321 
 income in SA 6123.5 6538 26.549 -15.6 0 57176 3321 
 pec ownership in SA  66.862 68.222 .247 -5.5 0 57176 3321 
 DPs index 
(combined) 

.018 .017 0 14.1 0 54433 3321 

 i 55  1.857 1.698 .011 14.55 0 54433 3321 
 i 6  2.078 1.891 .015 13 0 54433 3321 
 i 67 4.093 3.72 .028 13.45 0 54433 3321 
 

  



22 
 

 

1) Outcome Model 
 y=log(max. coverage) 

Variables (1) (2) (3) (4) 
     
Multi-unit building (dummy) 0.0765 0.0766 0.0766 0.0767 

(0.0525) (0.0515) (0.0515) (0.0520) 
Asset floor # 0.00803 0.00800 0.00799 0.00801 

(0.00642) (0.00643) (0.00639) (0.00642) 

Sqm 0.0129*** 0.0129*** 0.0129*** 0.0129*** 
(0.000559) (0.000562) (0.000555) (0.000559) 

log(price) 0.0884*** 0.0883*** 0.0883*** 0.0883*** 
(0.0271) (0.0269) (0.0267) (0.0270) 

crime_per1k -18.47 -18.69 -18.82 -18.58 

(14.59) (14.60) (14.74) (14.59) 

log(dist forest) -0.0533** -0.0529** -0.0527** -0.0530** 
(0.0231) (0.0225) (0.0227) (0.0228) 

i_55 0.00451    
 (0.0342)    
i_6  -0.000629   
  (0.0272)   
i_67   -0.00134  
   (0.0143)  
i_ - combined    0.0934 
    (3.483) 

Constant 13.32*** 13.33*** 13.33*** 13.33*** 
 (0.497) (0.492) (0.487) (0.493) 
     
Lambda (inv. Mills ratio) 0.0558*** 0.0592*** 0.0611*** 0.0579*** 
 (0.0754) (0.0738) (0.0734) (0.0747) 
     
Rho 0.1292 0.1371 0.1413 0.1341 
 (0.1724) (0.1682) (0.1672) (0.1705) 
     
Sigma 0.4315*** 0.4319*** 0.4321*** 0.4318*** 
 (0.0163) (0.0166) (0.0166) (0.0164) 
     
Observations 44,972 44,972 44,972 44,972 

Robust standard errors in parentheses (adjusted for 96 clusters in SA) 
*** p<0.01, ** p<0.05, * p<0.1 
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2) Selection Model: Probit - max likelihood 
 

 
 y=insurance purchase (dummy) 
Variables (1) (2) (3) (4) 
     
Age -0.00590*** -0.00591*** -0.00592*** -0.00591*** 
 (0.00145) (0.00145) (0.00146) (0.00145) 
n_floors 0.0272** 0.0272** 0.0272** 0.0272** 
 (0.0121) (0.0121) (0.0121) (0.0121) 
l_deal 0.243*** 0.243*** 0.243*** 0.243*** 
 (0.0522) (0.0522) (0.0522) (0.0522) 
pec_edu_13y 0.00402 0.00402 0.00402 0.00402 
 (0.00271) (0.00271) (0.00271) (0.00271) 
Constant -4.627*** -4.626*** -4.626*** -4.627*** 
 (0.682) (0.682) (0.682) (0.682) 
     
     
athrho 0.130 0.138 0.142 0.135 
 (0.175) (0.171) (0.171) (0.174) 
     
Slnsigma -0.840*** -0.839*** -0.839*** -0.840*** 
 (0.0377) (0.0383) (0.0385) (0.0381) 
     
Observations 44,972 44,972 44,972 44,972 
     
Wald chi2 652.71 653.11 653.74 652.59 
Log pseudo 
likelihood 

-13424.4    -13424.46 -13424.42 -13424.46 

Robust standard errors in parentheses (adjusted for 96 clusters in SA) 
*** p<0.01, ** p<0.05, * p<0.1 
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1) Average marginal effects 

 
*All models had similar marginal effects result, differing only in their 6th digit 
 

Variables dy/dx Delta-method 
Std. Err. 

P>|z| 

    
age -0.00092 0.00024 0.000 
n_floors 0. 00422  0.00200 0.035 
l_deal 0..03765 0.00962 0.000 
pec_edu_13y 0. 00062 0.00043 0.148 
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  (3) (4) (5) (6) (7) (8) 

VARIABLES 
log(struct

ure) structure 
log(struct

ure) structure 
log(struct

ure) structure 
              

Multi-unit dwelling 
(dummy) 0.0263 213,515 0.0253 207,690 0.0259 211,612 

 (0.0227) (159,396) (0.0228) (158,877) (0.0228) (159,196) 
distance to industry 6.83e-07 -69.61*** 1.07e-07 -76.24*** 1.09e-07 -74.76*** 

 
(3.80e-

06) (26.19) 
(3.76e-

06) (26.13) 
(3.86e-

06) (26.63) 
           
           

floor number 
0.0159**

* 62,472** 
0.0157**

* 60,612** 
0.0159**

* 61,969** 
 (0.00302) (27,529) (0.00300) (27,312) (0.00302) (27,426) 

Next to forest 
(dummy) -0.0492 

-
1.003e+06

** -0.0516 

-
1.025e+06

** -0.0514 

-
1.020e+06

** 
 (0.0604) (428,176) (0.0608) (429,467) (0.0606) (430,786) 

crime_per1k in SA -4.836 
-

2.090e+07 -6.062 
-

3.067e+07 -5.497 
-

2.575e+07 

 (6.873) 
(4.544e+0

7) (6.935) 
(4.460e+0

7) (6.899) 
(4.520e+0

7) 

sqm 
0.0130**

* 63,249*** 
0.0130**

* 63,320*** 
0.0130**

* 63,236*** 

 
(0.00034

9) (2,354) 
(0.00035

2) (2,360) 
(0.00034

7) (2,352) 

bld_age 

-
0.00396*

** 
-

71,180*** 

-
0.00393*

** 
-

70,505*** 

-
0.00395*

** 
-

70,842*** 

 
(0.00076

6) (8,940) 
(0.00075

6) (8,917) 
(0.00076

1) (8,896) 

h_prices in SA 
2.42e-
05*** 254.7*** 

2.38e-
05*** 249.9*** 

2.40e-
05*** 252.4*** 

 
(4.00e-

06) (48.40) 
(4.00e-

06) (48.34) 
(4.01e-

06) (48.48) 
i_           
           

i_55 -0.00914 -31,750       
 (0.0165) (107,263)       

i_6     -0.0142 -96,788     
     (0.0136) (73,661)     

i_67       -0.00492 -28,737 
       (0.00682) (40,812) 

Constant 13.70*** 

-
8.299e+06

*** 13.71*** 

-
8.121e+06

*** 13.71*** 

-
8.212e+06

*** 
 (0.0586) (830,123) (0.0579) (831,058) (0.0580) (834,356) 

age 

-
0.00510*

** 

-
0.00536**

* 

-
0.00510*

** 

-
0.00536**

* 

-
0.00510*

** 

-
0.00536**

* 
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(0.00047

5) (0.000440) 
(0.00047

5) (0.000439) 
(0.00047

5) (0.000439) 
n_floors in the 

building -0.00721 -0.00730 -0.00718 -0.00717 -0.00720 -0.00725 
 (0.00566) (0.00469) (0.00566) (0.00469) (0.00566) (0.00469) 

Next to forest 
(dummy) -0.134* -0.125* -0.134* -0.125* -0.134* -0.125* 

 (0.0750) (0.0751) (0.0750) (0.0750) (0.0750) (0.0750) 

income in SA 
-9.40e-
05*** 

-5.94e-
05*** 

-9.39e-
05*** 

-5.93e-
05*** 

-9.38e-
05*** 

-5.92e-
05*** 

 
(2.72e-

05) (2.13e-05) 
(2.71e-

05) (2.12e-05) 
(2.72e-

05) (2.12e-05) 

h_prices in SA 
8.20e-
05*** 

7.70e-
05*** 

8.18e-
05*** 

7.66e-
05*** 

8.19e-
05*** 

7.67e-
05*** 

 
(1.55e-

05) (1.27e-05) 
(1.55e-

05) (1.27e-05) 
(1.55e-

05) (1.27e-05) 

bld_age 

-
0.0198**

* 
-

0.0200*** 

-
0.0198**

* 
-

0.0200*** 

-
0.0198**

* 
-

0.0200*** 
 (0.00115) (0.00112) (0.00115) (0.00112) (0.00115) (0.00112) 

pec_ownership in SA 

-
0.00576*

* 
-

0.00488** 

-
0.00577*

* 
-

0.00490** 

-
0.00577*

* 
-

0.00489** 
 (0.00248) (0.00195) (0.00249) (0.00197) (0.00248) (0.00196) 

pec_edu_13y in SA 0.00413* 0.00222 0.00417* 0.00231 0.00415* 0.00226 
 (0.00250) (0.00200) (0.00251) (0.00202) (0.00251) (0.00201) 

Constant -0.384* -0.475*** -0.384* -0.475*** -0.384* -0.475*** 
 (0.219) (0.183) (0.219) (0.183) (0.219) (0.183) 

Athrho 0.564*** 1.387*** 0.569*** 1.389*** 0.565*** 1.388*** 
 (0.0539) (0.0856) (0.0526) (0.0852) (0.0534) (0.0857) 

Lnsigma 
-

0.713*** 15.48*** 
-

0.711*** 15.48*** 
-

0.713*** 15.48*** 
 (0.0263) (0.0570) (0.0258) (0.0571) (0.0260) (0.0572) 
           

Observations 91,992 92,317 91,992 92,317 91,992 92,317 
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6. Conclusions and Policy Implications  

The statistical estimations presented in this research test for the existence of the moral 

hazard hypothesis is  insurance coverage of  natural and anthropogenic hazards. The 

evidence presented is mixed.  Controlling for dwelling unit attributes and area 

(neighborhood) characteristics in the case of both structure and content policy, does not 

yield unambiguous  results. We find structure coverage directly related to  proximity to 

industry and to level of neighborhood crime rates and inversely related to distance form 

forest areas. In contrast is not related to the simulated presence of earthquakes. This last 

finding is interpreted as evidence supporting the moral hazard hypothesis. In the case 

of content coverage we find similar but generally weaker results. 

These results  beg the question as to why insurers don't take more  direct  and spatially 

differentiated action in promoting  hazard insurance given the moral hazard use and the 

tendency  of households to under-insure. We offer two explanations. The first is the 

uncertainty and magnitude of the natural and anthropogenic risks involved. Given the 

history of government intervention in the case of unanticipated disasters (including 

warfare) and the existence of a national compensation  mechanism, the private sector 

has tended to avoid this  market. Second the fear of catastrophic disaster and the 

inability to use standard actuarial in its forecasting has caused this area of insurance to 

overlooked or ignored. This while the demand side of the market is subject o moral 

hazard , the supply side has been  overshadowed by a tradition of heavy handed 

government intervention in the field of hazard insurance           

Given this situation we suggest the following policy measures to generate a better 

functioning market and to iron-out some of its' imperfections: 

• a public awareness campaign of natural and anthropogenic hazards.  Household 

behavior is governed by information which is not readily available in the case 

of hazards. An informed public needs to be aware of the environmental hazards 

it faces. Delivering this information through readily available platforms  such 

as dashboards on websites, should become standard practice in conveying 

information to the public which has come to expect this kind of information 

delivery through the Covid-19 pandemic    

• spatially differentiated insurance policies for different  forms of hazards 

(proximity to active seismic zones, flood zones,  areas prone to forest fires, 
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heavy industry and toxic waste concentrations etc),  Blanket national premia for 

earthquakes for example, simply perpetuate the current situation. Devising such 

as pricing system is of course no trivial matter and is a research project in its 

own right. But it is critical for combatting the moral hazard inherent in insurance 

coverage. 

• the devolution of  disaster management to the local level.  Again this another 

Corona-learned lesson where central government has begrudgingly been forced 

to  diffuse  authority to local authorities in those areas of responsibility such as 

shelter, health  and welfare where intervention is inherently local.    
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Appendix 1 

 

 

a. Strong structure 

The probability of severe damage is low 

b. Weak structure 

Higher risk of severe damage 
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We would expect the curve to shift from A type towards B-like type when the 
magnitude increases. Hence, we designed the Index in a manner that will preserve this 
trait. 
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