Long-Term Scheduling for Road Network Disaster Recovery

David Rey ¹ and Hillel Bar-Gera ²

¹School of Civil and Environmental Engineering, UNSW Sydney, Australia d.rey@unsw.edu.au

²Department of Industrial Engineering and Management, Ben-Gurion University, Beer-Sheva, Israel bargera@bgu.ac.il

> Cascading Disasters Workshop Haifa, Isreal, October 28-29, 2018

Outline

2 Problem Formulation

3 Numerical Results

Outline

Problem Formulation

3 Numerical Results

Problem Background

Transportation needs following a disaster depend on time scale:

- Short term (\sim 12-24 hours) evacuation
- Mid term (\sim 12-24 days) very complex
- $\bullet~\rightarrow$ Long term (~12-24 months) recovery

Cascading effects are due to interactions between decisions. Interactions can be negative or positive, of different types:

- $\bullet \ \rightarrow \ Objective \ function$
- $\bullet\ \rightarrow$ Feasibility of other decisions
- Demand for transportation

Problem Background (cont)

Network recovery can be organized into projects on damaged roads

Each project is assumed to have the following information available:

- Set of network links
- Project duration (may depend on other projects)
- Link capacity reduction
- Free-flow travel time augmentation

Method to measure congestion impacts \rightarrow traffic assignment

 \rightarrow Poor coordination of projects can lead to severe delays due to nonlinear congestion effects under User Equilibrium (UE)

Modelling Approach (1)

We make the following assumptions:

- Recovery projects must be scheduled in consecutive time periods
- Each link of the network is affected by at most one project over the planning period
- The planning period can be discretized, e.g. weeks, months
- Travellers' make route choice decisions based on the UE conditions
- System performance can be measured by the total network (i.e. total system travel time) over the planning horizon

Illustration: 10 projects, 15 time periods

 \rightarrow At each time period we determine the total network delay based on damaged and under repair links/projects — e.g. at time period 9, network delay is influenced by Projects 2 and 10 which are under repair and Projects 8 and 9 which are still damaged

Modelling Approach (2)

Our objective is to minimize the total network delay: at each period of the planning horizon, the network delay is determined by the traffic flow pattern resulting from links current state

 \rightarrow We use a bi-level programming formulation to represent this disaster recovery scheduling problem

- Upper-level: Scheduling problem Minimize total network delay of project schedule subject to recovery resource availability constraints
- Lower-level: Traffic Assignment Problem (TAP) User Equilibrium with adjusted link state

Outline

Network Disaster Recovery

2 Problem Formulation

3 Numerical Results

Traffic Assignment Problem (TAP)

Traffic assignment problem notation:

N	set of nodes
A	set of links
W	set of OD pairs
Q_w	demand of OD pair $w \in W$
Π_w	set of paths for $w \in W$
f_k^w	flow on path k for OD w
$\delta^w_{a,k}$	link-path binary matrix
x_a	link flow on $a \in A$
m_a	state of link $a \in A$
$t_a(x_a, m_a)$	travel time function on link $a \in A$ (e.g. BPR)

Link travel time is represented as a function of flow x_a and link state m_a (i.e. damaged, under repair or repaired).

TAP Representation (Beckmann, 1956)

$$\begin{aligned} \boldsymbol{x}^{\star}(\boldsymbol{m}) &= \arg\min \quad \sum_{a \in A} \int_{0}^{x_{a}} t_{a}(v, m_{a}) dv \\ \text{s.t.} &\sum_{k \in \Pi_{w}} f_{k}^{w} = Q_{w} \qquad \forall w \in W \\ &\sum_{w \in W} \sum_{k \in \Pi_{w}} f_{k}^{w} \delta_{a,k}^{w} = x_{a} \qquad \forall a \in A \\ &f_{k}^{w} \geq 0 \qquad \qquad \forall w \in W, k \in \Pi_{w} \\ &x_{a} \geq 0 \qquad \qquad \forall a \in A \end{aligned}$$

State-dependent Network Delay under UE

$$\mathcal{D}(\boldsymbol{m}) = \boldsymbol{x}^{\star}(\boldsymbol{m})^{\mathsf{T}} \boldsymbol{t}(\boldsymbol{x}^{\star}(\boldsymbol{m}), \boldsymbol{m}) = \sum_{a \in A} x_a^{\star}(m_a) t_a(x_a^{\star}(m_a), m_a)$$

Network Disaster Recovery	Problem Formulation	Numerical Results
00000	000000000	0000000

Project Scheduling

- $P \quad {\rm set \ of \ projects}$
- $D_p \quad \text{duration of } p \in P$
 - T set of time periods (|T| planning horizon)
- F_p feasible start times for $p \in P$: $F_p \equiv \{0, \ldots, |T| D_p\}$

Start time variables

$$g_{s,p} \equiv \begin{cases} 1 \text{ if project } p \text{ starts at time period } s \\ 0 \text{ otherwise} \end{cases} \quad \forall p \in P, \forall s \in F_p \end{cases}$$

Schedule constraints

$$\sum_{s \in F_p} g_{s,p} = 1 \quad \forall p \in P$$

Projects and Affected Links

 $\begin{array}{ll} A_p & \text{set of links affected by } p \in P \\ m_a & \text{state of link } a \in A_p \end{array}$

Affected links have 3 states: damaged \rightarrow under repair \rightarrow repaired

- At t = 0, all links $a \in A_p, p \in P$ are damaged (other links remain unaffected)
- If a recovery project p is active, all links $a \in A_p$ are under repair
- If a recovery project p is completed, *i.e.* has been **active** for D_p consecutive time periods, all links $a \in A_p$ are repaired

Project Pattern Representation

The network experiences a varying TSTT depending on which projects are active \rightarrow projects combinations. The number of distinct flow patterns is $2^{|P|}$

Let $\sigma \in \{1,\ldots,2^{|P|}\} = \Sigma$ be a pattern of projects

Pattern variables

$$k_{\sigma}^{t} \equiv \begin{cases} 1 \text{ if pattern } \sigma \text{ is selected at time } t \\ 0 \text{ otherwise} \end{cases} \quad \forall \sigma \in \Sigma, \forall t \in T \end{cases}$$

Pattern selection constraints

$$\sum_{\sigma \in \Sigma} k_{\sigma}^t = 1 \quad \forall t \in T$$

Network Disaster Recovery	Problem Formulation	Numerical Results
00000	000000000	0000000

Linking Schedule and Pattern Variables

To link the project schedule variables with the pattern selection variables, we introduce two binary matrices $[\gamma_{\sigma,p}]$ and $[\omega_{s,p}^t]$:

$$\begin{split} \gamma_{\sigma,p} &\equiv \begin{cases} 1 & \text{ if project } p \text{ is active in pattern } \sigma \\ 0 & \text{ otherwise} \end{cases} \quad & \forall p \in P, \forall \sigma \in \Sigma \\ \omega_{s,p}^t &\equiv \begin{cases} 1 & \text{ if } 0 \leq t \leq s + D_p - 1 \\ 0 & \text{ otherwise} \end{cases} \quad & \forall p \in P, \forall s \in F_p, \forall t \in T \end{split}$$

Linking constraints

$$\sum_{\sigma \in \Sigma} k_{\sigma}^t \gamma_{\sigma,p} = \sum_{s \in F_p} g_{s,p} \omega_{s,p}^t \quad \forall p \in P, \forall t \in T$$

Linking Schedule and Pattern Variables (2)

For instance, if
$$P = \{A, B, C\}$$
, $T = \{0, \dots, 7\}$ and $D_A = 5$

$$[\gamma_{\sigma,p}] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \qquad [\omega_{s,A}^t] = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$

Project A can start at t = 0, 1, 2 or 3

Recovery Resources Availability

Each project $p \in P$ requires a known amount of recovery resources per time period denoted R_p . The total amount of recovery resources available at time period $t \in T$ is denoted R_t .

For modeling this constraint, we introduce a binary matrix $[\zeta_{s,p}^t]$ (similar to $[\omega_{s,p}^t]$):

$$\zeta_{s,p}^t \equiv \begin{cases} 1 & \text{ if } s \leq t \leq s + D_p - 1 \\ 0 & \text{ otherwise} \end{cases} \quad \forall p \in P, \forall s \in F_p, \forall t \in T \end{cases}$$

Resource Availability Constraint

$$\sum_{p \in P} \sum_{s \in F_p} g_{s,p} \zeta_{s,p}^t R_p \le R_t \quad \forall t \in T$$

Disaster Recovery Scheduling Problem

$$\begin{array}{ll} \min & & \displaystyle \sum_{t \in T} \sum_{\sigma \in \Sigma} k_{\sigma}^{t} \mathcal{D}(\sigma) \\ \text{s.t.} & & \displaystyle \sum_{s \in F_{p}} g_{s,p} = 1 & & \forall p \in P \\ & & \displaystyle \sum_{\sigma \in \Sigma} k_{\sigma}^{t} = 1 & & \forall t \in T \\ & & \displaystyle \sum_{\sigma \in \Sigma} k_{\sigma}^{t} \gamma_{\sigma,p} = \sum_{s \in F_{p}} g_{s,p} \omega_{s,p}^{t} & & \forall p \in P, \forall t \in T \\ & & \displaystyle \sum_{p \in P} \sum_{s \in F_{p}} g_{s,p} \zeta_{s,p}^{t} R_{p} \leq R_{t} & & \forall t \in T \\ & & \displaystyle g_{s,p} \in \{0,1\} & & \forall p \in P, s \in F_{p} \\ & & k_{\sigma}^{t} \in \{0,1\} & & \forall t \in T, \sigma \in \Sigma \end{array}$$

 \rightarrow TAP (lower-level) implicitly represented in the objective

Disaster Recovery Scheduling Problem

$$\begin{array}{ll} \min & & \displaystyle \sum_{t \in T} \sum_{\sigma \in \Sigma} k_{\sigma}^{t} \mathcal{D}(\sigma) \\ \text{s.t.} & & \displaystyle \sum_{s \in F_{p}} g_{s,p} = 1 & & \forall p \in P \\ & & \displaystyle \sum_{\sigma \in \Sigma} k_{\sigma}^{t} = 1 & & \forall t \in T \\ & & \displaystyle \sum_{\sigma \in \Sigma} k_{\sigma}^{t} \gamma_{\sigma,p} = \sum_{s \in F_{p}} g_{s,p} \omega_{s,p}^{t} & & \forall p \in P, \forall t \in T \\ & & \displaystyle \sum_{p \in P} \sum_{s \in F_{p}} g_{s,p} \zeta_{s,p}^{t} R_{p} \leq R_{t} & & \forall t \in T \\ & & \displaystyle g_{s,p} \in \{0,1\} & & \forall p \in P, s \in F_{p} \\ & & k_{\sigma}^{t} \in [0,1] & & \forall t \in T, \sigma \in \Sigma \end{array}$$

 \rightarrow Proved that integrality restrictions on k_{σ}^{t} can be relaxed

Solution Approach

If the number of projects is "manageable" \rightarrow all project combinations can be enumerated and the corresponding TAP solved to obtain the associated network delay — highly parallelizable task, up to $2^{|P|}$ threads

Then, solve Disaster Recovery Scheduling Problem using Mixed-Integer Linear Programming (MILP) \rightarrow efficient commercial software available, e.g. CPLEX

Else, heuristic, Branch-and-Price approach proposed by Rey *et al.* $(2016)^1$ based on a statistical approximation of TSTT values and Column (pattern variable) Generation

¹Rey, D., Bar-Gera, H., Dixit, V.V., Waller, S.T., 2016. A branch and price algorithm for the bi-level network maintenance scheduling problem, in: 2016 INFORMS Annual Meeting. Nashville, USA. — journal paper under review

Scheduling Heuristics

We benchmark the MILP formulation against classical scheduling heuristics

- Shortest Processing Time (SPT): sort projects by increasing duration D_p
- Largest Average First-Order (LAFO): sort projects by decreasing $\bar{\Delta}_p$
- Approximated Smith's Ratio: sort projects by decreasing $\frac{\bar{\Delta}_p}{D_p}$

Outline

Network Disaster Recovery

2 Problem Formulation

3 Numerical Results

Test Data

- Berlin MPF network: 975 nodes and 2,184 links, available at https://github.com/bstabler/TransportationNetworks
- 10-project instance with 100 links affected per project
- 26 time periods (in weeks), uniformly distributed project duration (maximum duration is half of planning period)
- damaged state: link capacity reduction: 50%, link free-flow travel time augmentation: 20%
- All projects require a unit resource $R_p = 1$
- all numerical results presented in terms of normalized network delay $\rightarrow \widehat{\mathcal{D}}(\sigma) = \frac{\mathcal{D}(\sigma)}{\mathcal{D}(\sigma_0)}$
- All TAP solved with TAPAS (Bar-Gera, 2010)²

²Bar-Gera, H. (2010). Traffic assignment by paired alternative segments. Transportation Research Part B: Methodological, 44(8-9), 1022-1046.

Network Disaster Recovery

Problem Formulation

Numerical Results 000000

Berlin MPF map and Recovery Projects

First-order Network Delay Effects

Let φ_p be a binary variable representing project activeness. For each $p \in P$ and for each of the $2^{|P|-1} = 512$ sub-patterns $\tilde{\sigma}$:

$$\Delta_{p,\tilde{\sigma}} \equiv \mathcal{D}([\varphi_p = 1] \oplus \tilde{\sigma}) - \mathcal{D}([\varphi_p = 0] \oplus \tilde{\sigma})$$

Network Disaster Recovery

Problem Formulation

Numerical Results

Congestion Level vs Recovery Resources

Analysis of MILP solution for $R_t = 4$ and $R_t = 10$

Summary

New mixed integer programming formulation for the disaster recovery scheduling problem

Competitive scheduling heuristics based on first-order network delay effects

Future work focused on improving proposed approach for large number of projects and approximation algorithms

Thank you for your attention