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Problem Background

Transportation needs following a disaster depend on time scale:

• Short term (∼12-24 hours) - evacuation

• Mid term (∼12-24 days) - very complex

• → Long term (∼12-24 months) - recovery

Cascading effects are due to interactions between decisions.
Interactions can be negative or positive, of different types:

• → Objective function

• → Feasibility of other decisions

• Demand for transportation
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Problem Background (cont)

Network recovery can be organized into projects on damaged roads

Each project is assumed to have the following information
available:

• Set of network links

• Project duration (may depend on other projects)

• Link capacity reduction

• Free-flow travel time augmentation

Method to measure congestion impacts → traffic assignment

→ Poor coordination of projects can lead to severe delays due to
nonlinear congestion effects under User Equilibrium (UE)



Network Disaster Recovery Problem Formulation Numerical Results

Modelling Approach (1)

We make the following assumptions:

• Recovery projects must be scheduled in consecutive time
periods

• Each link of the network is affected by at most one project
over the planning period

• The planning period can be discretized, e.g. weeks, months

• Travellers’ make route choice decisions based on the UE
conditions

• System performance can be measured by the total network
(i.e. total system travel time) over the planning horizon
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Illustration: 10 projects, 15 time periods
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→ At each time period we determine the total network delay based
on damaged and under repair links/projects — e.g. at time period
9, network delay is influenced by Projects 2 and 10 which are under
repair and Projects 8 and 9 which are still damaged
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Modelling Approach (2)

Our objective is to minimize the total network delay: at each
period of the planning horizon, the network delay is determined by
the traffic flow pattern resulting from links current state

→ We use a bi-level programming formulation to represent this
disaster recovery scheduling problem

• Upper-level: Scheduling problem - Minimize total network
delay of project schedule subject to recovery resource
availability constraints

• Lower-level: Traffic Assignment Problem (TAP) - User
Equilibrium with adjusted link state
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Traffic Assignment Problem (TAP)

Traffic assignment problem notation:

N set of nodes
A set of links
W set of OD pairs
Qw demand of OD pair w ∈W
Πw set of paths for w ∈W
fwk flow on path k for OD w
δwa,k link-path binary matrix

xa link flow on a ∈ A
ma state of link a ∈ A

ta(xa,ma) travel time function on link a ∈ A (e.g. BPR)

Link travel time is represented as a function of flow xa and link
state ma (i.e. damaged, under repair or repaired).
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TAP Representation (Beckmann, 1956)

x?(m) = arg min
∑
a∈A

∫ xa

0
ta(v,ma)dv

s.t.
∑
k∈Πw

fwk = Qw ∀w ∈W
∑
w∈W

∑
k∈Πw

fwk δ
w
a,k = xa ∀a ∈ A

fwk ≥ 0 ∀w ∈W,k ∈ Πw

xa ≥ 0 ∀a ∈ A

State-dependent Network Delay under UE

D(m) = x?(m)ᵀ t(x?(m),m) =
∑
a∈A

x?a(ma)ta(x
?
a(ma),ma)
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Project Scheduling

P set of projects
Dp duration of p ∈ P
T set of time periods (|T | planning horizon)
Fp feasible start times for p ∈ P : Fp ≡ {0, . . . , |T | −Dp}

Start time variables

gs,p ≡
{

1 if project p starts at time period s

0 otherwise
∀p ∈ P,∀s ∈ Fp

Schedule constraints ∑
s∈Fp

gs,p = 1 ∀p ∈ P
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Projects and Affected Links

Ap set of links affected by p ∈ P
ma state of link a ∈ Ap

Affected links have 3 states: damaged → under repair → repaired

• At t = 0, all links a ∈ Ap, p ∈ P are damaged (other links
remain unaffected)

• If a recovery project p is active, all links a ∈ Ap are under
repair

• If a recovery project p is completed, i.e. has been active for
Dp consecutive time periods, all links a ∈ Ap are repaired
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Project Pattern Representation

The network experiences a varying TSTT depending on which
projects are active → projects combinations. The number of
distinct flow patterns is 2|P |

Let σ ∈ {1, . . . , 2|P |} = Σ be a pattern of projects

Pattern variables

ktσ ≡
{

1 if pattern σ is selected at time t

0 otherwise
∀σ ∈ Σ, ∀t ∈ T

Pattern selection constraints∑
σ∈Σ

ktσ = 1 ∀t ∈ T



Network Disaster Recovery Problem Formulation Numerical Results

Linking Schedule and Pattern Variables

To link the project schedule variables with the pattern selection
variables, we introduce two binary matrices [γσ,p] and [ωts,p]:

γσ,p ≡
{

1 if project p is active in pattern σ

0 otherwise
∀p ∈ P,∀σ ∈ Σ

ωts,p ≡
{

1 if 0 ≤ t ≤ s+Dp − 1

0 otherwise
∀p ∈ P,∀s ∈ Fp,∀t ∈ T

Linking constraints∑
σ∈Σ

ktσγσ,p =
∑
s∈Fp

gs,pω
t
s,p ∀p ∈ P,∀t ∈ T
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Linking Schedule and Pattern Variables (2)

For instance, if P = {A,B,C}, T = {0, . . . , 7} and DA = 5

[γσ,p] =



0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
1 1 1


[ωts,A] =


1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1



Project A can start at t = 0, 1, 2 or 3
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Recovery Resources Availability

Each project p ∈ P requires a known amount of recovery resources
per time period denoted Rp. The total amount of recovery
resources available at time period t ∈ T is denoted Rt.

For modeling this constraint, we introduce a binary matrix [ζts,p]
(similar to [ωts,p]):

ζts,p ≡
{

1 if s ≤ t ≤ s+Dp − 1

0 otherwise
∀p ∈ P,∀s ∈ Fp,∀t ∈ T

Resource Availability Constraint∑
p∈P

∑
s∈Fp

gs,pζ
t
s,pRp ≤ Rt ∀t ∈ T



Disaster Recovery Scheduling Problem

min
∑
t∈T

∑
σ∈Σ

ktσD(σ)

s.t.
∑
s∈Fp

gs,p = 1 ∀p ∈ P

∑
σ∈Σ

ktσ = 1 ∀t ∈ T∑
σ∈Σ

ktσγσ,p =
∑
s∈Fp

gs,pω
t
s,p ∀p ∈ P,∀t ∈ T

∑
p∈P

∑
s∈Fp

gs,pζ
t
s,pRp ≤ Rt ∀t ∈ T

gs,p ∈ {0, 1} ∀p ∈ P, s ∈ Fp
ktσ ∈ {0, 1} ∀t ∈ T, σ ∈ Σ

→ TAP (lower-level) implicitly represented in the objective
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min
∑
t∈T

∑
σ∈Σ

ktσD(σ)

s.t.
∑
s∈Fp

gs,p = 1 ∀p ∈ P

∑
σ∈Σ

ktσ = 1 ∀t ∈ T∑
σ∈Σ

ktσγσ,p =
∑
s∈Fp

gs,pω
t
s,p ∀p ∈ P,∀t ∈ T

∑
p∈P

∑
s∈Fp

gs,pζ
t
s,pRp ≤ Rt ∀t ∈ T

gs,p ∈ {0, 1} ∀p ∈ P, s ∈ Fp
ktσ ∈ [0, 1] ∀t ∈ T, σ ∈ Σ

→ Proved that integrality restrictions on ktσ can be relaxed
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Solution Approach

If the number of projects is “manageable” → all project
combinations can be enumerated and the corresponding TAP
solved to obtain the associated network delay — highly
parallelizable task, up to 2|P | threads

Then, solve Disaster Recovery Scheduling Problem using
Mixed-Integer Linear Programming (MILP) → efficient commercial
software available, e.g. CPLEX

Else, heuristic, Branch-and-Price approach proposed by Rey et al.
(2016)1 based on a statistical approximation of TSTT values and
Column (pattern variable) Generation

1Rey, D., Bar-Gera, H., Dixit, V.V., Waller, S.T., 2016. A branch and price
algorithm for the bi-level network maintenance scheduling problem, in: 2016
INFORMS Annual Meeting. Nashville, USA. — journal paper under review
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Scheduling Heuristics

We benchmark the MILP formulation against classical scheduling
heuristics

• Shortest Processing Time (SPT):
sort projects by increasing duration Dp

• Largest Average First-Order (LAFO):
sort projects by decreasing ∆̄p

• Approximated Smith’s Ratio:

sort projects by decreasing
∆̄p

Dp
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Test Data
• Berlin MPF network: 975 nodes and 2,184 links, available at
https://github.com/bstabler/TransportationNetworks

• 10-project instance with 100 links affected per project

• 26 time periods (in weeks), uniformly distributed project
duration (maximum duration is half of planning period)

• damaged state: link capacity reduction: 50%, link free-flow
travel time augmentation: 20%

• All projects require a unit resource Rp = 1

• all numerical results presented in terms of normalized network
delay → D̂(σ) = D(σ)

D(σ0)

• All TAP solved with TAPAS (Bar-Gera, 2010)2

2Bar-Gera, H. (2010). Traffic assignment by paired alternative segments.
Transportation Research Part B: Methodological, 44(8-9), 1022-1046.



Network Disaster Recovery Problem Formulation Numerical Results

Berlin MPF map and Recovery Projects
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First-order Network Delay Effects

Let ϕp be a binary variable representing project activeness. For
each p ∈ P and for each of the 2|P |−1 = 512 sub-patterns σ̃:

∆p,σ̃ ≡ D([ϕp = 1]⊕ σ̃)−D([ϕp = 0]⊕ σ̃)
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Congestion Level vs Recovery Resources
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Analysis of MILP solution for Rt = 4 and Rt = 10
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Summary

New mixed integer programming formulation for the disaster
recovery scheduling problem

Competitive scheduling heuristics based on first-order network
delay effects

Future work focused on improving proposed approach for large
number of projects and approximation algorithms



Thank you for your attention
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